- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Carter, J.G. (2)
-
Mohler, G. (2)
-
Hasan, M. (1)
-
Khorshidi, S. (1)
-
Sha, H. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We review several concepts and modeling techniques from statistical and machine learning that have been developed to forecast recidivism. We show how these methods might be repurposed for forecasting police officer use of force. Using open Chicago police department use-of-force complaint data for illustration, we discuss feature engineering, construction of black-box models, interpretable forecasts, and fairness.more » « less
-
Sha, H.; Hasan, M.; Carter, J.G.; Mohler, G. (, IEEE International Conference on Big Data)null (Ed.)Interpretable models for criminal justice forecasting are desirable due to the high-stakes nature of the application. While interpretable models have been developed for individual level forecasts of recidivism, interpretable models are lacking for the application of space-time crime hotspot forecasting. Here we introduce an interpretable Hawkes process model of crime that allows forecasts to capture near-repeat effects and spatial heterogeneity while being consumable in the form of easy-to-read score cards. For this purpose we employ penalized likelihood estimation of the point process with a total-variation regularization that enforces the triggering kernel to be piece-wise constant. We derive an efficient expectation-maximization algorithm coupled with forward backward splitting for the TV constraint to estimate the model. We apply our methodology to synthetic data and space-time crime data from Indianapolis. The TV-Hawkes process achieves similar accuracy to standard Hawkes process models of crime while increasing interpretability and transparency.more » « less
An official website of the United States government

Full Text Available